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Abstract A numerical investigation aimed at understanding the flow and heat transfer
characteristics of pulsating turbulent flow in an abrupt pipe expansion was carried out. The flow
patterns are classified by four parameters; the Reynolds number, the Prandtl number, the abrupt
expansion ratio and the pulsation frequency. The influence of these parameters on the flow was
studied in the range 104,Re , 5 £ 104, 0.7,Pr , 7.0, 0.2 , d/D , 0.6 and 5 , f , 35. It was
found that the influence of pulsation on the mean time-averaged Nusselt number is insignificant
(around 10 per cent increase) for fluids having a Prandtl number less than unity. This effect is
appreciable (around 30 per cent increase) for fluids having Prandtl number greater than unity. For
all pulsation frequencies, the variation in the mean time-averaged Nusselt number, maximum
Nusselt number and its location with Reynolds number and diameter ratio exhibit similar
characteristics to steady flows.
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Nomenclature
A ¼ pipe wall area
a ¼ constant
Cm ¼ constant in turbulence model
Cf ¼ constant
d ¼ upstream pipe diameter
D ¼ downstream pipe diameter
E ¼ roughness parameter (law of the

wall)
f ¼ frequency
h ¼ local heat transfer coefficient
H ¼ enthalpy
H ¼ step height {(D-d)/2}
k ¼ kinetic energy of turbulence
L ¼ length of the downstream section
l ¼ length scale
ṁ ¼ mass flow rate
Nu ¼ Nusselt number based on

downstream dimensions
P ¼ mean static pressure

Pr ¼ Prandtl number
q00 ¼ local heat flux
_Qw ¼ wall heat transfer
r ¼ upstream pipe radius
R ¼ downstream pipe radius
Re ¼ Reynolds number ¼ UmD/n
Sf ¼ source of variable f
t ¼ time in a cycle of pulsation
T ¼ total time of cycle
T ¼ absolute temperature
U, V ¼ time averaged velocity components

in equation (1)
u, v ¼ velocity components at the wall
U(r) ¼ steady state inlet velocity profile
u(r) ¼ pulsating velocity profile at the inlet

to abrupt expansion
x ¼ axial coordinate
y ¼ radial distance from the center of

the pipe
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Introduction
The turbulent flow downstream of an axisymmetric sudden expansion has
been of interest to many investigators due to its theoretical and practical
importance. Such geometry is encountered in many industrial applications
such as heat exchangers, combustion chambers and chemical mixing
equipment. Several experimental and theoretical investigations have been
conducted to study the flow field and heat transfer characteristics of such
geometry for steady-state flows. Experimental investigations include those
of Amano et al. (1983), Baughn et al. (1984, 1987, 1989), Dallen back et al.
(1987), Krall and Sparrow (1966), Vogel and Eaton (1985), and Zemanic and
Dougall (1970), while numerical investigations include those of Amano
(1983), Chieng and Launder (1980), Habiband McEligot (1982) and Valencia
et al. (1996). Those experimental and numerical investigations showed that
the local heat transfer coefficients in the separated, reattached and
redevelopment regions were several times (5 to 9 times) higher than those
for a fully developed flow in a pipe having the same diameter as the
downstream. The heat transfer enhancement, both maximum and average
values of heat transfer coefficients, increased strongly as the abrupt
expansion ratio increased. The location of the maximum heat transfer
coefficient moved downstream as the abrupt expansion ratio increased and
the peak values of Nusselt number correlated fairly well in terms of the
Reynolds number based on the upstream pipe diameter irrespective of the
expansion ratio. Previous theoretical studies concerned with laminar flows
provide heat transfer enhancement through the use of fins and pulsating
components. These include the work of Cho and Hyun (1989), Hammad and
Vrandis (1998), Kim and Yang (1998), Valencia and Hinojosa (1997) and
Valencia et al. (1996). Valencia and Hinojosa (1997), in their numerical
solutions of pulsating flow and heat transfer characteristics in channel with
a backward-facing step, found that wall shear rate in the separation zone

Greek symbols
a ¼ amplitude of pulsation
Gw ¼ exchange coefficient for f
1 ¼ dissipation rate of turbulence

energy
k ¼ von Karman constant (law of the

wall)
m ¼ viscosity
n ¼ kinematic viscosity
r ¼ density
q ¼ general dependant variable

Subscripts
b ¼ bulk
fd ¼ fully developed

l ¼ laminar
in ¼ inlet
max ¼ maximum
p ¼ pulsating
p ¼ nearest node to the wall in equation

(12)
s ¼ steady
t ¼ turbulent
w ¼ wall

Superscript

¯ ¼ average
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varied markedly with pulsatile flow and wall heat transfer remained
relatively constant. The time-average pulsatile heat transfer at the wall was
greater as with the steady flow for same Reynolds number. Cho and Hyun
(1989) found that the conventional Reynolds analogy of skin friction and
heat transfer holds for low frequency but is not applicable at high
frequency for motion and heat transfer studies of flow containing a
pulsating component.

As can be seen from the literature review, the problem of steady turbulent
and laminar flows in sudden pipe expansion has received much attention.
However, no work has been reported on heat transfer characteristics in the
separation regions of a pulsating turbulent flow in sudden pipe expansions.
In this study, a numerical investigation aimed at understanding the flow and
heat transfer characteristics for the pulsating turbulent flow in abrupt pipe
expansion is carried out.

Problem formulation
The present study is based on the numerical solution of the two-dimensional
form of the time-averaged Navier-Stokes equations. The two-equation k-1
model was used in the present calculations. Turbulent viscosity is defined by
the high Reynolds number version of the k-1 model. The physical properties
were assumed to be constant. Hence, the governing equations for the present
flow configuration can be written in general form as:

›rw

›t
þ

›

›x
rUw2 Gw

›w

›x

� �
þ

1

r

›

›r
rrVw2 Gwr

›w

›r

� �
¼ Sw ð1Þ

where w is the dependent variable, G is the diffusion coefficient and S is the
source term.

Inlet and boundary conditions
Inlet
A fully developed inlet velocity profile is used for steady turbulent flows. The
walls are maintained at a constant temperature which is higher than that of the
fluid and are treated as no-slip.

U ðrÞ ¼ U in 1 2
y

r

� �1
7

ð2Þ

T ¼ T in ð3Þ

For the pulsating turbulent flow, the fully developed inlet velocity profile is
used and the axial velocity component is assumed to be sinusoidal in time as
given by:
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uðrÞ ¼ U ðrÞð1 þ a sinðf ·tÞÞ ð4Þ

where Uin is the steady-state inlet velocity, a is the amplitude of oscillation,
f is the frequency and t is the time.

Values of k and 1 are not known at the inlet, but, they are approximated
(Rodi, 1984) as:

k ¼ l�u2 ð5Þ

where ū is the average inlet velocity and l is a constant equal to 0.03, and

1 ¼ Cm

k
3
2

l
ð6Þ

where l ¼ aR with R as the radius of the downstream pipe and a as constant
ða ¼ 0:03Þ

Walls
The boundary conditions for the steady-state flow and unsteady flow are
given as:

u ¼ 0; v ¼ 0; and T ¼ Tw ð7Þ

The value of the kinetic energy of turbulence near the wall, kp is calculated
from the transport equation for k with the flux of energy to the solid wall set
at zero. The corresponding value of 1 is calculated from equation (6) where
l ¼ Cmkyp:

The heat transfer coefficient was calculated as follows:

h ¼
_Qw

½AðTw 2 TbÞ�
ð8Þ

where A is the wall area and Tb is the bulk temperature and is given by:

Tb ¼

R D

0 U ðrÞT dyR D

0 U ðrÞ dy
ð9Þ

and Tw is the wall temperature.
Q̇w is the wall heat transfer and is calculated as follows:

_Qw ¼

m1bHw2Hpc

yp

yþp

ð �U
þ

p þPf Þ

ð10Þ

where
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Uþ
p ¼

1

k
lnðEyþp Þ;

yþp ¼ C 0:25
m k0:25

p yp=n; and

Pf ¼ Cf
Pr1

Prt 2 1

� �
Prt

Pr1

� �1
4

The subscript p refers to the node nearest to the wall and E, k, and Cf are
constants ðk ¼ 0:4187; Cf ¼ 9:24; and E ¼ 9:793Þ: The average Nusselt
number is given by:

�Nu ¼

Z L

0

�Nu dx

L
ð11Þ

Outlet
A long domain of approximately 50 diameters was chosen to minimize the
boundary influence of the downstream conditions. Thus, at the outlet, all
variables are assumed to be fully developed with zero-axial gradient
condition:

›w

›x
¼ 0 ð12Þ

and across a symmetric boundary, all normal gradients are zero in addition
to zero cross flow.

›w

›r

� �
r¼0

¼ 0 ð13Þ

Numerical analysis
A discretized version of the governing equation (equation (1)) is derived by
integrating it over a control volume with surface fluxes formulated by a
quadratic upwind interpolation method (Versteeg and Malalasekera, 1995) and
solved by the SIMPLE algorithm (Patankar, 1980). Applying this integration
procedure to all control volumes and for all the dependent variables in field
results in an algebraic equation system. The solution procedure is implicit in
space coordinates and explicit in time coordinate. To establish a pulsating flow,
the flow velocity at the inlet to the abrupt expansion is varied sinusoidally as
given by equation (4). The solution converges at each time step before
proceeding to the next time step. The time resolution is taken such that each
pulsation period is divided into 20 time steps. Converged steady state solution
is used as an initial condition. As the flow field is symmetric, the analysis was
performed in only half of the domain.
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The validity of the numerical calculations is verified through grid-
dependence tests and comparisons with experimental results for steady
turbulent flow. The grid points are clustered in the radial direction so that the
finer spacing is formed near the wall and at the boundary of the recirculation
region. A typical grid system is shown in Figure 1(a). Non-uniform grids of
29 £ 24 were employed. Grid independence tests were made for the predicted
values of the velocity profiles and the Nusselt number. Tests for grid
independence were made in comparison with the data of Habiband Whitelaw
(1980) for two coaxial jets. Figure 1(b) shows that increasing the grid from
24 £ 18 to 30 £ 22 has no effect on the predicted velocity field. Figure 1(c) shows
that increasing the grid from 27 £ 20 to 29 £ 24 has maximum error of only 1.3
per cent rather than 7 per cent for grid increase from 21 £ 15 to 27 £ 20:
Extrapolation of these data shows that the error in the the predicted Nusselt
number of the presently used grid of 29 £ 24 will be much less than 0.3 per cent
as a numerical error. The convergence tolerance was set at 1024 for flow
variables and 1024 for enthalpy.

To validate the numerical calculations, the computational results for steady
flow were compared with experimental results available in the literature.
Figure 2 shows comparison between the present computational results and the
experimental results of Stieglmer et al. (1989) for the radial distribution of the
axial velocity at different downstream axial positions. As can be seen, there is a
close agreement with the experimental results. Figure 3(a)-(c) shows the
comparison between the present numerical results for the local Nusselt number
downstream of an abrupt pipe expansion and the experimental results reported
by Zemanic and Dougall (1970). Close agreement is exhibited in trend and
values for a Reynolds number of 10,000 to 17,990. A significant difference is
observed when Reynolds numbers is increased to 47,600. As reported by
Zemanic and Dougall, the values of the Nusselt number (for this case) appeared
anomalously low which led to rerun. The results for the rerun were within
^10 per cent of the measured values. We may therefore conclude that, given
this degree of experimental variation and computational approximation
together with the effect of the turbulence model used, the computed results
shown in Figure 3 are in close agreement with the measured values. Other
comparisons of the predicted reattachment length and the maximum Nusselt
number with experimental data are presented in Table I and Figure 4(a) and (b).
Table I shows the influence of Reynolds number on the location of maximum
Nusselt number. The location of the peak value of the Nusselt number shifts
upstream from 10 to 8.5 step height as the Reynolds number increases from
10,000 to 50,000. This behavior is in accordance with the experimental results
of Baughn et al. (1984) and Zemanic and Dougall (1970).

Results and discussion
The first set of results pertains to the streamlines for pulsating flows. Figure 5
shows the streamlines of the air flow at Reynolds number (ReD) 50,000 and a
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Figure 1.
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Figure 2.
Radial profiles of axial

velocity component

Heat transfer to
pulsating

turbulent flow

293



Figure 3.
Variation of local Nusselt
number at different
Reynolds number,
d/D ¼ 0.43, Pr ¼ 0.7

HFF
13,3

294



diameter ratio (d/D) of 0.5 at different times in a pulsation cycle for a pulsation
frequency of 10 Hz. Since the flow is axi-symmetric only half of the pipe is
shown in the figure. As can be seen, there is a recirculating zone immediately
after the step. The flow reattaches at a certain distance downstream from
the abrupt expansion. The value of the streamline at the boundary of the
recirculating zone corresponds to a stream function value of unity, while the
value of the streamline at the centerline of the pipe corresponds to a stream
function value of zero. As can be seen recirculation occurs immediately
downstream from the abrupt expansion and the recirculation-zone length
varies with time. The reattachment length decreases slightly with time during
the first and fourth quarter of the cycle and increases again during the second
and third quarter of the cycle. This is attributed to the change in the magnitude
of velocity with time during each cycle. Figure 6 shows the variation of the
local Nusselt number along the axial location at different times in a pulsation
cycle. As can be seen, the location of the maximum Nusselt number (expected
at the reattachment point) varies in the same manner as the reattachment
length as it decreases in the first and fourth quarters of the cycle and increases
again in the second and third quarters of the cycle.

The second set of results pertains to the effect of the Prandtl number on the
local Nusselt number for pulsating flows. Figure 7(a) and (b) shows the time-
averaged local Nusselt number versus the axial location x/H for two values of
the Prandtl number 0.7 and 7.0. The plots exhibit a similar trend to the steady-
state case. The local Nusselt number downstream from an abrupt expansion
increases to a maximum value and then decreases to the fully developed value
as discussed earlier. As can be seen from Figure 7(a), the effect of frequency on
the Nusselt number is insignificant for fluids having the Prandtl number in the

Investigator Re Reattachment length (x/H)

Zemanic and Dougall (1970), d/D ¼ 0.43, Pr ¼ 0.7 4,180 9
7,040 9

10,060 9
17,990 10
47,640 6.2
66,260 5.9

Baughn et al. (1984), d/D ¼ 0.4, Pr ¼ 0.7 4,310 12
7,120 12

17,310 10
44,540 9

Present work, d/D ¼ 0.43, Pr ¼ 0.7 7,040 10
10,060 9.73
17,990 9.53
47,640 8.5

Table I.
Comparison of

reattachment
lengths (x/H ) at

different Reynolds
numbers
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Figure 4.
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order of 1 or less. This effect is appreciable for fluids of higher Prandtl numbers
ðPr . 1Þ as can be seen from Figure 7(b). Increase in the Reynolds number has
negligible effect on the values of the local Nusselt number for all the values of
pulsation frequency considered in the present study (see Figure 7(a) and (b)).

Figure 5.
Streamlines plot for a

cycle of pulsation at
Re ¼ 50,000, d/D ¼ 0.5,
f ¼ 10 Hz, and Pr ¼ 0.7
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The third set of results pertains to the time-averaged maximum Nusselt
number. Figure 8 shows the variation of the time-averaged maximum Nusselt
number versus the Reynolds number and the diameter ratio, respectively, for a
range of pulsation frequencies. The time-averaged maximum Nusselt number
increases with the increase in Reynolds number for all pulsation frequencies.
The increase is not significant but the trend is similar to the ones obtained for
steady flows. Figure 9 shows the variation in the value of the maximum
Nusselt number with the variation of diameter ratio d/D and Reynolds number
for pulsating flow. As can be seen, as the diameter ratio increases, the value of
the maximum Nusselt number decreases. The reduction in the Nusselt number
values for larger diameter ratios may be attributed to the fact that as the
diameter ratio increases recirculation zone diminishes. This results in less
turbulence intensities downstream from the abrupt expansion, hence less heat
transfer rates are expected. This trend is consistent with the steady-state
results obtained by Eaton and Johnston (1981). Also in this case, the frequency
of pulsation has almost negligible effect on the value of the maximum Nusselt
number. The present calculations for the effect of the diameter ratio on the
location of the reattachment point at different pulsation frequencies and
Reynolds numbers indicate that, for a given Reynolds number, the location
of the maximum Nusselt number moves downstream as the diameter ratio
increases for all pulsation frequencies. Hence it exhibits the same trend as for
steady-state case (Eaton and Johnston, 1981). The frequency of pulsation has no
effect on the location of the reattachment point.

Figure 6.
Local Nusselt number at
different time step in a
cycle of pulsation at
Re ¼ 50,000, f ¼ 10 Hz,
d/D ¼ 0.5, and Pr ¼ 0.7
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Figure 7.
(a) Variation of local
Nusselt number with

axial location d/D ¼ 0.3,
a ¼ 0.25, and Pr ¼ 0.7.

(b) Variation of local
Nusselt number with

axial location d/D ¼ 0.3,
a ¼ 0.25, and Pr ¼ 7.0

(continued)
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Figure 7.
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The fourth set of results pertains to the effect of pulsation frequency on the
value of heat transfer characteristics for different Prandtl numbers. As can be
seen from Figure 10, the Nusselt number ratio increases linearly. The increase is
very small (,5 per cent) in the frequency range being considered in this study

Figure 8.
Influence of Reynolds
number on maximum

Nusselt number at
a ¼ 0.25, and Pr ¼ 0.7

Figure 9.
Influence of diameter

ratio (d/D) on maximum
Nusselt number at

different frequencies and
at a ¼ 0.25, and Pr ¼ 0.7
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(5-35 Hz). As the Prandtl number increases, the rate of increase in the Nusselt
number ratio becomes significant. There are different interpretations reported
in the literature regarding the effect of pulsation frequency on the heat transfer
rate. One interpretation is that the frequency of pulsation can greatly lower the
critical Reynolds number (compared to steady flows) and steepens the velocity
profile close to walls. This is likely to reduce the boundary layer thickness where
heat transfer by viscous effect dominates. Hence an increase in turbulence
intensity as well as the heat transfer coefficient is expected (Kastner and Shih,
1951). The second interpretation which is given by Valueva et al. (1994)
indicates that in the case of quasi-steady turbulence (low frequency oscillations)
with turbulent Stokes number St , t=to ! 1; the turbulence succeeds in lining
up with the instantaneous value of the Reynolds number at every instant of
time, which in the case of a high-frequency range, the time scales of turbulence
are much higher than the period of oscillations ðt=to @ 1Þ and the turbulence
does not succeed in responding to time variations in the flow rate (the Reynolds
number). For intermediate frequencies, force oscillations interact with turbulent
pulsations, which increases the intensity of the latter and the heat transfer rates.
The calculated results of the present study lie in the region of intermediate
frequency range and increased rates of heat transfer are obtained.

The fifth set of results pertains to the effect of the Reynolds number on the
mean time-averaged Nusselt number for the abrupt expansion ratios. The
calculations are made for Prandtl numbers of 0.7 and 7.0 as shown in
Figure 11(a)-(c), respectively. As can be seen from Figure 11(a) and (b),

Figure 10.
Influence of frequency on
the mean time-averaged
Nusselt number ratio
(Nup/Nus) at different
Prandtl number and at
d/D¼0.5, Re ¼ 50,000,
and a ¼ 0.25
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Figure 11.
(a) Influence of Reynolds

number on the mean
time-averaged Nusselt
number (Nup/Nus ) at

different frequencies and
at a¼0.25, Pr ¼ 0.7, and

d/D ¼ 0.6. (b) Influence
of Reynolds number on

mean time-averaged
Nusselt number ratio
(Nup/Nus) at different

frequencies and at
a ¼ 0:25, Pr¼0.7, and

d/D ¼ 0.5 (c) Influence of
Reynolds number on the

mean time-averaged
Nusselt number ratio
(Nup/Nus) at different

frequencies and at
d/D¼0.5, a ¼ 0.25, and

Pr ¼ 7.0
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the Nusselt number ratio (Nup/Nus) decreases with increase in Reynolds
number except for a diameter ratio of 0.5 where the ratio of the Nusselt number
increases to a maximum value at certain Reynolds numbers and then gradually
decreases upon further increase in the Reynolds number. This feature is clearly
indicated in Figure 11(c) in case of the high Prandtl numbers. Figure 12 shows
variation of Nup=Nus with the diameter ratio for frequencies of 5, 10, and 35 Hz
and Reynolds numbers of 30,000 and 50,000. As can be seen, the Nusselt
number ratio increases as the diameter ratio increases. It reaches a peak value
at a diameter ratio of 0.5 and then decreases for further increase in the diameter

Figure 12.
(a) Influence of diameter
ratio (d/D) on mean time-
averaged Nusselt
number (Nup/Nus ) at
a ¼ 0.25, Pr ¼ 0.7, and
Re ¼ 30,000.
(b) Influence of diameter
ratio (d/D) on mean time-
averaged Nusselt
number (Nup/Nus ) at
a ¼ 0:25, Pr ¼ 0.7, and
Re ¼ 50,000
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ratio. Also the values of the Nusselt number ratio increase with the increase in
pulsation frequency.

Turbulence intensities downstream from the abrupt expansion vary
inversely with the diameter ratio (d/D) (Eaton and Johnston, 1981). Therefore, it
may be concluded that for a given frequency and diameter ratio, as the
Reynolds number increases the turbulence downstream the abrupt expansion
increases and becomes frozen. Hence, no significant variation in heat transfer
rates are expected. For the diameter ratio of 0.5, Nup=Nus increases to a
maximum and then decreases with further increase in the Reynolds number.
Increase in the Nup=Nus with the Reynolds number may be attributed to the fact
that the first half of the curve could be related to the intermediate frequency
range where increase in Nup=Nus is expected, whereas, the second half of the
curve could be related to the region of high frequency where Nup=Nus

decreases to a steady-state value. The behaviour of the Nusselt number with
diameter ratio can be explained in view of the bursting phenomena using the
turbulent bursting model (Genin et al., 1992; Liao and Wang, 1985). This model
defines certain regions on the frequency-Reynolds number plane such that
depending on the region in this plane, the bursting frequency can be dependent
or independent of the pulsation frequency (Habibet al., 1999). According to the
results of Habib et al. (1999), Mamayev et al. (1976) and Liao and Wang (1985),
heat transfer can be increased or decreased with Reynolds number and
frequency. The diameter ratio influences to a large extent the bursting
frequency and consequently the influence of the Reynolds number on the
Nusselt number as a result of change in both the reattachment length and the
size of the recirculation zone. For small diameter ratio ðd=D , 0:5Þ turbulence
downstream from an abrupt expansion dominates and imposed pulsation
frequency has negligible effect on heat transfer rates. As the diameter ratio
increases towards 0.5, the turbulence downstream from the abrupt expansion
diminishes and imposed pulsation frequency enhances the turbulence. Hence
the heat transfer rate increases.

The sixth set of results pertains to the effect of the Prandtl number on the
mean time-averaged Nusselt number at different pulsation frequencies.
Figure 13 shows the variation of the Nusselt number ratio with the Prandtl
number at a Reynolds number of 50,000. As can be seen from the figure, the
Nusselt number increases with the Prandtl number reaching a maximum value
at a Prandtl number of 2.0 and then decreases as the Prandtl number increases
for all frequencies. The Nusselt number values increase slightly as the
pulsating frequency increases. In relation to the influence of the Prandtl
number, two opposing effects may be considered. The first is that as the
Prandtl number increases, the flow tends to laminarize and consequently, an
increase in the boundary-layer thickness occurs through which heat is
transferred on a molecular scale. On the other hand, an increase in the Prandtl
number causes the influence of pulsation on heat transfer characteristics to
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become significant. The balance between these two effects is likely to be
the reason for the increase in heat transfer as the Prandtl number increases to
Pr ¼ 2:0 which is followed by a reduction in heat transfer at a higher Pr. This is
also confirmed by Figure 10 described earlier.

Conclusions
. At all pulsation frequencies the variation in mean time-averaged Nusselt

number, maximum Nusselt number and its location with Reynolds
number and diameter ratio exhibit similar trends to steady flows.

. Frequency has insignificant effect on the values of mean time-averaged
Nusselt number for a Prandtl number of 0.7 (the maximum increase in the
mean time-averaged Nusselt number ratio is approximately 10 per cent at
the frequency of 35 Hz and Re ¼ 30; 000). Whereas, the effect of pulsation
frequency is appreciable for fluids having a Prandtl number greater than
1.0 (maximum rise of about 30 per cent is indicated in the mean time-
averaged Nusselt number ratio for a Prandtl number of 7.0 at the
frequency of 40 Hz and a Reynolds number of 20,000).

. An increase in the Reynolds number results in the decrease of the mean
time-averaged Nusselt number ratio for all pulsation frequencies and
diameter ratios. An interesting behaviour is indicated for the diameter
ratio of 0.5. The values of the mean time-averaged Nusselt number ratio
increases as the Reynolds number increases, reaches a peak, and then
decreases for further increase in the Reynolds number for all pulsation
frequencies. Similar characteristics are obtained for a Prandtl number of
7.0 as well.

Figure 13.
Influence of Prandtl
number on the mean
time-averaged Nusselt
number ratio (Nup / Nus)
at different frequencies
and at Re¼50,000,
a ¼ 0.25, and d/D ¼ 0.5
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. For all pulsation frequencies, as the diameter ratio increases the values of
mean time-averaged Nusselt number ratio increases. It reaches a peak at a
diameter ratio of 0.5 and then decreases for further increase in the
diameter ratio.
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